• Medientyp: E-Artikel
  • Titel: Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms
  • Beteiligte: Ajayi, Peter T.; Katti, Prasanna; Zhang, Yingfan; Willingham, T. Bradley; Sun, Ye; Bleck, Christopher K. E.; Glancy, Brian
  • Erschienen: Springer Science and Business Media LLC, 2022
  • Erschienen in: Nature Communications, 13 (2022) 1
  • Sprache: Englisch
  • DOI: 10.1038/s41467-022-30401-9
  • ISSN: 2041-1723
  • Schlagwörter: General Physics and Astronomy ; General Biochemistry, Genetics and Molecular Biology ; General Chemistry ; Multidisciplinary
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear. Here, we demonstrate the presence of a myofibrillar matrix in the tubular, but not indirect flight (IF) muscles within <jats:italic>Drosophila melanogaster</jats:italic>. Moreover, we find that loss of transcription factor <jats:italic>H15</jats:italic> increases sarcomere branching frequency in the tubular jump muscles, and we show that sarcomere branching can be turned on in IF muscles by <jats:italic>salm</jats:italic>-mediated conversion to tubular muscles. Finally, we demonstrate that <jats:italic>neurochondrin</jats:italic> misexpression results in myofibrillar connectivity in IF muscles without conversion to tubular muscles. These data indicate an evolutionarily conserved myofibrillar matrix regulated by both cell-type dependent and independent mechanisms.</jats:p>
  • Zugangsstatus: Freier Zugang