• Medientyp: E-Artikel
  • Titel: An increased cell cycle gene network determines MEK and Akt inhibitor double resistance in triple-negative breast cancer
  • Beteiligte: van der Noord, Vera E.; McLaughlin, Ronan P.; Smid, Marcel; Foekens, John A.; Martens, John W. M.; Zhang, Yinghui; van de Water, Bob
  • Erschienen: Springer Science and Business Media LLC, 2019
  • Erschienen in: Scientific Reports, 9 (2019) 1
  • Sprache: Englisch
  • DOI: 10.1038/s41598-019-49809-3
  • ISSN: 2045-2322
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractTriple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor clinical prognosis and limited targeted treatment strategies. Kinase inhibitor screening of a panel of 20 TNBC cell lines uncovered three critical TNBC subgroups: 1) sensitive to only MEK inhibitors; 2) sensitive to only Akt inhibitors; 3) resistant to both MEK/Akt inhibitors. Using genomic, transcriptomic and proteomic datasets of these TNBC cell lines we unravelled molecular features associated with the MEK and Akt drug resistance. MEK inhibitor-resistant TNBC cell lines were discriminated from Akt inhibitor-resistant lines by the presence of PIK3CA/PIK3R1/PTEN mutations, high p-Akt and low p-MEK levels, yet these features could not distinguish double-resistant cells. Gene set enrichment analyses of transcriptomic and proteomic data of the MEK and Akt inhibitor response groups revealed a set of cell cycle-related genes associated with the double-resistant phenotype; these genes were overexpressed in a subset of breast cancer patients. CDK inhibitors targeting the cell cycle programme could overcome the Akt and MEK inhibitor double-resistance. In conclusion, we uncovered molecular features and alternative treatment strategies for TNBC that are double-resistant to Akt and MEK inhibitors.
  • Zugangsstatus: Freier Zugang