Identification and validation of potential common biomarkers for papillary thyroid carcinoma and Hashimoto’s thyroiditis through bioinformatics analysis and machine learning
Sie können Bookmarks mittels Listen verwalten, loggen Sie sich dafür bitte in Ihr SLUB Benutzerkonto ein.
Medientyp:
E-Artikel
Titel:
Identification and validation of potential common biomarkers for papillary thyroid carcinoma and Hashimoto’s thyroiditis through bioinformatics analysis and machine learning
Erschienen:
Springer Science and Business Media LLC, 2024
Erschienen in:
Scientific Reports, 14 (2024) 1
Sprache:
Englisch
DOI:
10.1038/s41598-024-66162-2
ISSN:
2045-2322
Entstehung:
Anmerkungen:
Beschreibung:
AbstractThere is a growing body of evidence suggesting that Hashimoto’s thyroiditis (HT) may contribute to an increased risk of papillary thyroid carcinoma (PTC). However, the exact relationship between HT and PTC is still not fully understood. The objective of this study was to identify potential common biomarkers that may be associated with both PTC and HT. Three microarray datasets from the GEO database and RNA-seq dataset from TCGA database were collected to identify shared differentially expressed genes (DEGs) between HT and PTC. A total of 101 genes was identified as common DEGs, primarily enriched inflammation- and immune-related pathways through GO and KEGG analysis. We performed protein–protein interaction analysis and identified six significant modules comprising a total of 29 genes. Subsequently, tree hub genes (CD53, FCER1G, TYROBP) were selected using random forest (RF) algorithms for the development of three diagnostic models. The artificial neural network (ANN) model demonstrates superior performance. Notably, CD53 exerted the greatest influence on the ANN model output. We analyzed the protein expressions of the three genes using the Human Protein Atlas database. Moreover, we observed various dysregulated immune cells that were significantly associated with the hub genes through immune infiltration analysis. Immunofluorescence staining confirmed the differential expression of CD53, FCER1G, and TYROBP, as well as the results of immune infiltration analysis. Lastly, we hypothesise that benzylpenicilloyl polylysine and aspirinmay be effective in the treatment of HT and PTC and may prevent HT carcinogenesis. This study indicates that CD53, FCER1G, and TYROBP play a role in the development of HT and PTC, and may contribute to the progression of HT to PTC. These hub genes could potentially serve as diagnostic markers and therapeutic targets for PTC and HT.