Erschienen:
Springer Science and Business Media LLC, 2020
Erschienen in:
Scientific Reports, 10 (2020) 1
Sprache:
Englisch
DOI:
10.1038/s41598-020-68542-w
ISSN:
2045-2322
Entstehung:
Anmerkungen:
Beschreibung:
AbstractEarth’s orbital variations on timescales of 104–105 years, known as Milankovitch cycles, have played a critical role in pacing climate change and ecosystem dynamics, through glacial and/or monsoon dynamics. However, the climatic and biotic consequences of these cycles on much longer (~ 107 years) timescales remain unclear, due to a lack of long proxy records with precise age constraints. Here, we show ~ 10-Myr scale variations in early Mesozoic (250–180 Ma) records of lake-level, desert distribution, biogenic-silica burial flux, atmospheric CO2 levels (pCO2), and sea-surface-temperature (SST). Their phase relationships, coupled with carbon cycle modeling results, suggest that orbitally-paced summer monsoon dynamics modulates changes in terrestrial weatherability by ~ 20%, affecting changes in pCO2 of up to 500–1,000 ppmv and 3–7 °C SST. We also infer that these ~ 10-Myr scale climatic variations could have been causally linked to biotic turnover, size variations in dinosaur footprints, and tetrapod dispersal, potentially through spatio-temporal variations in resource availability and arid-hot climatic barriers at low-middle latitudes.