• Medientyp: E-Artikel
  • Titel: Crystal structure thermal evolution and novel orthorhombic phase of methylammonium lead bromide, CH3NH3PbBr3
  • Beteiligte: Abia, Carmen; López, Carlos A.; Cañadillas-Delgado, Laura; Fernández-Diaz, María T.; Alonso, José A.
  • Erschienen: Springer Science and Business Media LLC, 2022
  • Erschienen in: Scientific Reports
  • Sprache: Englisch
  • DOI: 10.1038/s41598-022-21544-2
  • ISSN: 2045-2322
  • Schlagwörter: Multidisciplinary
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>Methylammonium (MA) lead trihalide perovskites, CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>PbX<jats:sub>3</jats:sub> (X = I, Br, Cl), have emerged as a new class of light-absorbing materials for photovoltaic applications, reaching efficiencies of 23% when implemented in solar cell heterojunctions. In particular, MAPbBr<jats:sub>3</jats:sub> is a promising member with a large bandgap that gives rise to a high open circuit voltage. Here we present a structural study from neutron diffraction (ND) data of an undeuterated MAPbBr<jats:sub>3</jats:sub> specimen, carried out to follow its crystallographic behaviour in the 2–298 K temperature range. Besides the known crystallographic phases, i.e. the high-temperature <jats:italic>Pm</jats:italic><jats:inline-formula><jats:alternatives><jats:tex-math>$$\overline{3}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mover> <mml:mn>3</mml:mn> <mml:mo>¯</mml:mo> </mml:mover> </mml:math></jats:alternatives></jats:inline-formula><jats:italic>m</jats:italic> cubic structure, the intermediate <jats:italic>I</jats:italic>4<jats:italic>/mcm</jats:italic> tetragonal symmetry and the low-temperature <jats:italic>Pnma</jats:italic> orthorhombic phase, we additionally identified, from a detailed sequential ND analysis, a novel intermediate phase within the 148.5–154.0 K temperature range as an orthorhombic <jats:italic>Imma</jats:italic> structure, early associated with a coexistence of phases. Moreover, our ND data allowed us to unveil the configuration of the organic MA units and their complete localization within the mentioned temperature range, thus improving the crystallographic description of this compound. The evolution with temperature of the H-bonds between the organic molecule and the inorganic cage is also followed. A deep knowledge of the crystal structure and, in particular, the MA conformation inside the perovskite cage seems essential to establish structure–property correlations that may drive further improvements.</jats:p>
  • Zugangsstatus: Freier Zugang