• Medientyp: E-Artikel
  • Titel: Unsupervised data-driven stratification of mentalizing heterogeneity in autism
  • Beteiligte: Lombardo, Michael V.; Lai, Meng-Chuan; Auyeung, Bonnie; Holt, Rosemary J.; Allison, Carrie; Smith, Paula; Chakrabarti, Bhismadev; Ruigrok, Amber N. V.; Suckling, John; Bullmore, Edward T.; Bailey, Anthony J.; Baron-Cohen, Simon; Bolton, Patrick F.; Bullmore, Edward T.; Carrington, Sarah; Catani, Marco; Chakrabarti, Bhismadev; Craig, Michael C.; Daly, Eileen M.; Deoni, Sean C. L.; Ecker, Christine; Happé, Francesca; Henty, Julian; Jezzard, Peter; [...]
  • Erschienen: Springer Science and Business Media LLC, 2016
  • Erschienen in: Scientific Reports, 6 (2016) 1
  • Sprache: Englisch
  • DOI: 10.1038/srep35333
  • ISSN: 2045-2322
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractIndividuals affected by autism spectrum conditions (ASC) are considerably heterogeneous. Novel approaches are needed to parse this heterogeneity to enhance precision in clinical and translational research. Applying a clustering approach taken from genomics and systems biology on two large independent cognitive datasets of adults with and without ASC (n = 694; n = 249), we find replicable evidence for 5 discrete ASC subgroups that are highly differentiated in item-level performance on an explicit mentalizing task tapping ability to read complex emotion and mental states from the eye region of the face (Reading the Mind in the Eyes Test; RMET). Three subgroups comprising 45–62% of ASC adults show evidence for large impairments (Cohen’s d = −1.03 to −11.21), while other subgroups are effectively unimpaired. These findings delineate robust natural subdivisions within the ASC population that may allow for more individualized inferences and accelerate research towards precision medicine goals.
  • Zugangsstatus: Freier Zugang