• Medientyp: E-Artikel
  • Titel: Kronecker coefficients from algebras of bi-partite ribbon graphs
  • Beteiligte: Geloun, Joseph Ben; Ramgoolam, Sanjaye
  • Erschienen: Springer Science and Business Media LLC, 2023
  • Erschienen in: The European Physical Journal Special Topics, 232 (2023) 23-24, Seite 3637-3643
  • Sprache: Englisch
  • DOI: 10.1140/epjs/s11734-023-00850-4
  • ISSN: 1951-6355; 1951-6401
  • Schlagwörter: Physical and Theoretical Chemistry ; General Physics and Astronomy ; General Materials Science
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractBi-partite ribbon graphs arise in organizing the large N expansion of correlators in random matrix models and in the enumeration of observables in random tensor models. There is an algebra $$\mathcal {K}(n)$$ K ( n ) , with basis given by bi-partite ribbon graphs with n edges, which is useful in the applications to matrix and tensor models. The algebra $$\mathcal {K}(n)$$ K ( n ) is closely related to symmetric group algebras and has a matrix-block decomposition related to Clebsch–Gordan multiplicities, also known as Kronecker coefficients, for symmetric group representations. Quantum mechanical models which use $$\mathcal {K}(n)$$ K ( n ) as Hilbert spaces can be used to give combinatorial algorithms for computing the Kronecker coefficients.