Sie können Bookmarks mittels Listen verwalten, loggen Sie sich dafür bitte in Ihr SLUB Benutzerkonto ein.
Medientyp:
E-Artikel
Titel:
Asymptotic analysis of Vlasov-type equations under strong local alignment regime
Beteiligte:
Kang, Moon-Jin;
Vasseur, Alexis F.
Erschienen:
World Scientific Pub Co Pte Ltd, 2015
Erschienen in:
Mathematical Models and Methods in Applied Sciences, 25 (2015) 11, Seite 2153-2173
Sprache:
Englisch
DOI:
10.1142/s0218202515500542
ISSN:
0218-2025;
1793-6314
Entstehung:
Anmerkungen:
Beschreibung:
We consider the hydrodynamic limit of a collisionless and non-diffusive kinetic equation under strong local alignment regime. The local alignment is first considered by Karper, Mellet and Trivisa in [On strong local alignment in the kinetic Cucker–Smale model, in Hyperbolic Conservation Laws and Related Analysis with Applications, Springer Proceedings in Mathematics & Statistics, Vol. 49 (Springer, 2014), pp. 227–242], as a singular limit of an alignment force proposed by Motsch and Tadmor in [A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys. 141 (2011) 923–947]. As the local alignment strongly dominates, a weak solution to the kinetic equation under consideration converges to the local equilibrium, which has the form of mono-kinetic distribution. We use the relative entropy method and weak compactness to rigorously justify the weak convergence of our kinetic equation to the pressureless Euler system.