• Medientyp: E-Artikel
  • Titel: Electrosynthesis of Highly Functionalized N,N-Diarylamides and Selective Functionalization of Caffeine Via Electrochemically Generated HFIP Ethers
  • Beteiligte: Dörr, Maurice; Lips, Sebastian; Röckl, Johannes; Waldvogel, Siegfried R.
  • Erschienen: The Electrochemical Society, 2020
  • Erschienen in: ECS Meeting Abstracts
  • Sprache: Nicht zu entscheiden
  • DOI: 10.1149/ma2020-01432500mtgabs
  • ISSN: 2151-2043
  • Schlagwörter: General Medicine
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p> Most cross-coupling reactions make use of transition metal-based catalysts and require prefunctionalization or an excess of oxidizers. This results in large quantities of partially toxic reagent waste. By anodic cross-coupling via the oxidation of phenols, those drawbacks are avoided.<jats:sup>[1]</jats:sup> Utilizing simple undivided cells, a safe and sustainable protocol for the synthesis of highly functionalized <jats:italic>N</jats:italic>,<jats:italic>N</jats:italic>-diarylamides was presented. This involves the hydrolysis of the initially formed hydrobenzoxazolo-[2,3-b]benzoxazole during a simple work-up procedure.<jats:sup>[2]</jats:sup> The resulting <jats:italic>N</jats:italic>,<jats:italic>N</jats:italic>-Bis(2-hydroxyphenyl)amides are of special interest for the synthesis of crown ethers<jats:sup>[3]</jats:sup> and biologically active compounds.<jats:sup>[4]</jats:sup> </jats:p> <jats:p>Derivatives of caffeine showed biological activities in the past.<jats:sup>[5]</jats:sup> The selective functionalization of caffeine was now achieved by electrochemically generating the corresponding hexafluoroisopropyl ether and thereby activating it for subsequent metal-catalyzed cross-coupling reactions. Using a “Design of Experiments” approach (DoE) for the optimization of the initial step, detailed information about the system was gathered. This led to the implementation of a fast and selective electrolysis.</jats:p> <jats:p>[1] A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, S. R. Waldvogel, <jats:italic>Angew. Chem. Int. Ed.</jats:italic> <jats:bold>2018</jats:bold>, <jats:italic>57</jats:italic>, 5594–5619; <jats:italic>Angew. Chem. </jats:italic> <jats:bold>2018, </jats:bold> <jats:italic>130, </jats:italic>5694–5721.</jats:p> <jats:p>[2] M. Dörr, S. Lips, C. A. Martínez-Huitle, D. Schollmeyer, R. Franke, S. R. Waldvogel, <jats:italic>Chem. Eur. J.</jats:italic> <jats:bold>2019</jats:bold>, <jats:italic>25</jats:italic>, 7835–7838.</jats:p> <jats:p>[3] a) T. Németh, A. Kormos, T. Tóth, G. T. Balogh, P. Huszthy, <jats:italic>Monatsh. Chem.</jats:italic> <jats:bold>2015</jats:bold>, <jats:italic>146</jats:italic>, 1291–1297; b) S. Lakatos, J. Fetter, F. Bertha, P. Huszthy, T. Tóth, V. Farkas, G. Orosz, M. Hollósi, <jats:italic>Tetrahedron</jats:italic> <jats:bold>2008</jats:bold>, <jats:italic>64</jats:italic>, 1012–1022.</jats:p> <jats:p>[4] M. Farkas, G. Láng, Z. Dinya, P. Sohár, L. Rózsa, Z. Sudai, <jats:italic>J. Mol. Struct.</jats:italic> <jats:bold>1985</jats:bold>, <jats:italic>131</jats:italic>, 131–140.</jats:p> <jats:p>[5] a) J. Pretorius, S. F. Malan, N. Castagnoli, J. J. Bergh, J. P. Petzer, <jats:italic>Bioorganic &amp; medicinal chemistry</jats:italic> <jats:bold>2008</jats:bold>, <jats:italic>16</jats:italic>, 8676–8684; b) D. E. Guttman, A. E. Gadzala, <jats:italic>Journal of pharmaceutical sciences</jats:italic> <jats:bold>1965</jats:bold>, <jats:italic>54</jats:italic>, 742–746.</jats:p> <jats:p> <jats:inline-formula> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2500fig1.jpg" xlink:type="simple" /> </jats:inline-formula> </jats:p> <jats:p>Figure 1</jats:p> <jats:p />
  • Zugangsstatus: Freier Zugang