• Medientyp: E-Artikel
  • Titel: Novel Synthetic Access to Para-Quinones Via Direct Electrochemical Oxidation
  • Beteiligte: Sprang, Fiona; Waldvogel, Siegfried R
  • Erschienen: The Electrochemical Society, 2023
  • Erschienen in: ECS Meeting Abstracts
  • Sprache: Nicht zu entscheiden
  • DOI: 10.1149/ma2023-01412337mtgabs
  • ISSN: 2151-2043
  • Schlagwörter: General Medicine
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p> Equipped with unique and straightforward tunable redox properties quinones find manifold applications ranging from bio-active compounds to material science.<jats:sup>[1]</jats:sup> Current state of the art synthesis still resorts to stoichiometric amounts of problematic chemical oxidizing agents and noble catalysts adding to the growing environmental strain by depletion of scarce resources.<jats:sup>[2]</jats:sup> In order to overcome this challenge, we have developed novel and scalable protocols for the synthesis of <jats:italic>para</jats:italic>-quinones applicable to readily available, inexpensive phenols and benzaldehydes.<jats:sup>[3]</jats:sup> In advancement of previous methods, the oxidation is performed free of catalyst, mediator, or terminal oxidizing agent, effectively minimizing waste. Electricity serves as a sustainable, reagent-free oxidant and enables excellent selectivity. Effortless scalability is ensured by the development of a flow protocol, which is operable at mild, ambient conditions. The novel protocols provide quinones in yields up to 99% and possess high synthetical utility through tolerance of a wealth of functional groups, including halogens, fulfilling the prerequisite for facile late-stage modification. The scalability of the reaction was proven on a gram-scale without corrosion in yield. Moreover, the versatility of the method was demonstrated by successful extension of the protocol to generate value-added quinones from the biopolymer lignin.</jats:p> <jats:p>Literature:</jats:p> <jats:p>[1] a) E. J. Son, J. H. Kim, K. Kim, C. B. Park, <jats:italic>J. Mater. Chem. A</jats:italic> <jats:bold>2016</jats:bold>, <jats:italic>4</jats:italic>, 11179; b) L. A. Sazanov, <jats:italic>Nat. </jats:italic> <jats:italic>Rev. Mol. Cell Bio.</jats:italic> <jats:bold>2015</jats:bold>, <jats:italic>16</jats:italic>, 375.</jats:p> <jats:p>[2] a) R. Yoshida, K. Isozaki, T. Yokoi, N. Yasuda, K. Sadakane, T. Iwamoto, H. Takaya, M. Nakamura, <jats:italic>Org. </jats:italic> <jats:italic>Biomol. Chem.</jats:italic> <jats:bold>2016</jats:bold>, <jats:italic>14</jats:italic>, 7468; <jats:italic>19</jats:italic>, b) K. Omura, <jats:italic>Synthesis</jats:italic> <jats:bold>1998</jats:bold>, <jats:italic>1998</jats:italic>, 1145.</jats:p> <jats:p>[3] F. Sprang, J. D. Herszman, S. R. Waldvogel,<jats:italic> Green Chem.</jats:italic> <jats:bold>2022</jats:bold>, <jats:italic>24</jats:italic>, 5116–5124.</jats:p> <jats:p> <jats:inline-formula> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="2337fig1.jpg" xlink:type="simple" /> </jats:inline-formula> </jats:p> <jats:p>Figure 1</jats:p> <jats:p />
  • Zugangsstatus: Freier Zugang