• Medientyp: E-Artikel
  • Titel: DFT Simulations on the Nitrogen Reduction Reaction Activity of Transition Metal Nitride and Oxynitride
  • Beteiligte: Liu, Ji; Glauber, Jean-Pierre; Lorenz, Julian; Bragulla, Sebastian; Müller, Björn; Harms, Corinna; Wark, Michael; Devi, Anjana; Nolan, Michael
  • Erschienen: The Electrochemical Society, 2023
  • Erschienen in: ECS Meeting Abstracts, MA2023-02 (2023) 54, Seite 2551-2551
  • Sprache: Nicht zu entscheiden
  • DOI: 10.1149/ma2023-02542551mtgabs
  • ISSN: 2151-2043
  • Schlagwörter: General Medicine
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p> Transition metal nitride (TMN) is a promising material towards the energy related applications including catalysis and energy storage.<jats:sup>1</jats:sup> The sluggish nitrogen reduction reaction (NRR) due to the high energy input to activate N<jats:sub>2</jats:sub> remains a significant challenge for NRR electrocatalysts. The surface N of TMN can be a solution to this with initial N vacancy formation via hydrogenation steps and ammonia formation. In addition, with a small amount of surface oxygen present in the catalyst surface, the resulting oxynitride seems very interesting and active towards NRR.<jats:sup>2</jats:sup> But the mechanism behind this is not yet understood.</jats:p> <jats:p>In this study, we first focused on the modelling of the structure of metal nitride (ZrN) and oxynitride (ZrO<jats:sub>x</jats:sub>N<jats:sub>y</jats:sub>/ZrN) surfaces. The structure of oxynitride is obtained by running molecular dynamics (MD) calculations at both room temperature and experimental deposition temperature (90°C and 750°C). NRR reaction is then studied via the Mars-Van Krevelen (MvK) mechanism with introducing surface N vacancy and subsequent N<jats:sub>2</jats:sub> adsorption and N filling. With computing the reaction energy and activation barriers of key reaction steps on both ZrN and ZrO<jats:sub>x</jats:sub>N<jats:sub>y</jats:sub>/ZrN, we can find a clue on how surface N of TMN helps to activate N<jats:sub>2</jats:sub> and the role of small amount of surface oxygen on activating N<jats:sub>2</jats:sub>. To study the origin of small amount of oxygen, reaction energies and full reaction pathway along the deposition process are computed and plotted. Finally, dopant effect will be modeled with transition metal dopants (e.g. Cu and Hf) at surface region to study any localized electronic effect on NRR.</jats:p> <jats:p>These results can be useful to design and deposit ZrN acting as effective NRR electrocatalysts.</jats:p> <jats:p>References</jats:p> <jats:p>[1] Luo, Q.; Lu, C.; Liu, L.; Zhu, M., A review on the synthesis of transition metal nitride nanostructures and their energy related applications, <jats:italic>Green Energy &amp; Environ.</jats:italic> 2023, 8, 406</jats:p> <jats:p>[2] Young, S. D., Ceballos, B. M., Banerjee, A., Mukundan, R., Pilania, G., &amp; Goldsmith, B. R, Metal Oxynitrides for the Electrocatalytic Reduction of Nitrogen to Ammonia. <jats:italic>J. Phys. Chem. C.</jats:italic> 2022, <jats:italic>126</jats:italic>, 12980-12993. </jats:p>
  • Zugangsstatus: Freier Zugang