• Medientyp: E-Artikel
  • Titel: Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus
  • Beteiligte: Salhanick, A. I.; Amatruda, J. M.
  • Erschienen: American Physiological Society, 1988
  • Erschienen in: American Journal of Physiology-Endocrinology and Metabolism, 255 (1988) 2, Seite E173-E179
  • Sprache: Englisch
  • DOI: 10.1152/ajpendo.1988.255.2.e173
  • ISSN: 0193-1849; 1522-1555
  • Schlagwörter: Physiology (medical) ; Physiology ; Endocrinology, Diabetes and Metabolism
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, we investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5'-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyltransferase. CMP reduced neuraminidase-releasable [14C]sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.</jats:p>