• Medientyp: E-Artikel
  • Titel: Development of a low-dose anti-resorptive drug regimen reveals synergistic suppression of bone formation when coupled with disuse
  • Beteiligte: Lloyd, Shane A.J.; Travis, Neil D.; Lu, Teng; Bateman, Ted A.
  • Erschienen: American Physiological Society, 2008
  • Erschienen in: Journal of Applied Physiology
  • Sprache: Englisch
  • DOI: 10.1152/japplphysiol.00632.2007
  • ISSN: 8750-7587; 1522-1601
  • Schlagwörter: Physiology (medical) ; Physiology
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p> Safe and effective countermeasures to spaceflight-induced osteoporosis are required to mitigate the potential for mission-critical fractures and ensure long-term bone health in astronauts. Two anti-resorptive drugs, the bisphosphonate zoledronic acid (ZOL) and the anti-receptor activator of NF-κB ligand protein osteoprotegerin (OPG), were investigated to find the minimum, comparable doses that yield a maximal increase in bone quality, while minimizing deleterious effects on turnover and mineralization. Through a series of five trials in normally loaded female mice ( n = 56/trial), analysis of trabecular volume fraction and connectivity using microcomputed tomography, along with biomechanical testing, quantitative histomorphometry, and compositional analysis, was used to select 45 μg/kg ZOL and 500 μg/kg OPG as doses that satisfy these criteria. These doses were then examined for their ability to mitigate bone loss following short-term unloading through hindlimb suspension (HLS). Seventy-two mice were prophylactically administered ZOL, OPG, or PBS and assigned to loaded control or 2-wk HLS groups ( n = 12 for each of 6 groups). Both anti-resorptives were able to preserve trabecular microarchitecture and femoral elastic and maximum force in HLS mice (+30–40% ZOL/OPG vs. PBS). In HLS mice, anti-resorptive dosing reduced resorption perimeter at the femoral endocortical surface by 30% vs. PBS. In loaded control mice, anti-resorptives produced no change in bone formation rate; however, reductions in bone formation rate brought about by HLS were exacerbated by anti-resorptive treatment, suggesting synergistic inhibition of osteoblasts during disuse. Refined anti-resorptive dosing will tend to target countermeasures to the period of disuse, resulting in faster recovery and less adverse effects for astronauts. </jats:p>
  • Zugangsstatus: Freier Zugang