• Medientyp: E-Artikel
  • Titel: Systemic Delivery of Microencapsulated 3-Bromopyruvate for the Therapy of Pancreatic Cancer
  • Beteiligte: Chapiro, Julius; Sur, Surojit; Savic, Lynn Jeanette; Ganapathy-Kanniappan, Shanmugasundaram; Reyes, Juvenal; Duran, Rafael; Thiruganasambandam, Sivarajan Chettiar; Moats, Cassandra Rae; Lin, MingDe; Luo, Weibo; Tran, Phuoc T.; Herman, Joseph M.; Semenza, Gregg L.; Ewald, Andrew J.; Vogelstein, Bert; Geschwind, Jean-François
  • Erschienen: American Association for Cancer Research (AACR), 2014
  • Erschienen in: Clinical Cancer Research
  • Sprache: Englisch
  • DOI: 10.1158/1078-0432.ccr-14-1271
  • ISSN: 1078-0432; 1557-3265
  • Schlagwörter: Cancer Research ; Oncology
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>Purpose: This study characterized the therapeutic efficacy of a systemically administered formulation of 3-bromopyruvate (3-BrPA), microencapsulated in a complex with β-cyclodextrin (β-CD), using an orthotopic xenograft mouse model of pancreatic ductal adenocarcinoma (PDAC).</jats:p><jats:p>Experimental Design: The presence of the β-CD–3-BrPA complex was confirmed using nuclear magnetic resonance spectroscopy. Monolayer as well as three-dimensional organotypic cell culture was used to determine the half-maximal inhibitory concentrations (IC50) of β-CD–3-BrPA, free 3-BrPA, β-CD (control), and gemcitabine in MiaPaCa-2 and Suit-2 cell lines, both in normoxia and hypoxia. Phase-contrast microscopy, bioluminescence imaging (BLI), as well as zymography and Matrigel assays were used to characterize the effects of the drug in vitro. An orthotopic lucMiaPaCa-2 xenograft tumor model was used to investigate the in vivo efficacy.</jats:p><jats:p>Results: β-CD–3-BrPA and free 3-BrPA demonstrated an almost identical IC50 profile in both PDAC cell lines with higher sensitivity in hypoxia. Using the Matrigel invasion assay as well as zymography, 3-BrPA showed anti-invasive effects in sublethal drug concentrations. In vivo, animals treated with β-CD–3-BrPA demonstrated minimal or no tumor progression as evident by the BLI signal as opposed to animals treated with gemcitabine or the β-CD (60-fold and 140-fold signal increase, respectively). In contrast to animals treated with free 3-BrPA, no lethal toxicity was observed for β-CD–3-BrPA.</jats:p><jats:p>Conclusion: The microencapsulation of 3-BrPA represents a promising step towards achieving the goal of systemically deliverable antiglycolytic tumor therapy. The strong anticancer effects of β-CD–3-BrPA combined with its favorable toxicity profile suggest that clinical trials, particularly in patients with PDAC, should be considered. Clin Cancer Res; 20(24); 6406–17. ©2014 AACR.</jats:p>
  • Zugangsstatus: Freier Zugang