Erschienen in:
The FEBS Journal, 286 (2019) 22, Seite 4542-4553
Sprache:
Englisch
DOI:
10.1111/febs.15021
ISSN:
1742-464X;
1742-4658
Entstehung:
Anmerkungen:
Beschreibung:
Mitochondrial DNA encodes key subunits of the oxidative phosphorylation complexes essential for ATP production. Translation initiation in mitochondria requires two general factors, mtIF2 and mtIF3, whose counterparts in bacteria are essential for protein synthesis. In this study, we report the characterization of the fission yeast Schizosaccharomyces pombe mtIF2 (Mti2) and mtIF3 (Mti3). Deletion of mti2 impairs cell growth on the respiratory medium. The growth defect of the mti2 deletion mutant can be suppressed by expressing IFM1, the Saccharomyces cerevisiae homolog of Mti2, demonstrating functional conservation between the two proteins. Deletion of mti2 also impairs mitochondrial protein synthesis. Unlike mti2, deletion of mti3 does not affect cell growth on respiratory media and mitochondrial translation. However, deletion of mti3 exacerbates the growth defect of the Δmti2 mutant, suggesting that the two proteins have distinct, but partially overlapping functions during the process of mitochondrial translation initiation in S. pombe. Both Mti2 and Mti3 are associated with the small subunit of the mitochondrial ribosome (mitoribosome). Disruption of mti2, but not mti3, causes dissociation of the mitoribosome and also abolishes Mti3 binding to the small subunit of the mitoribosome. Our results suggest that Mti2 and Mti3 bind in a sequential manner to the small subunit of the mitoribosome and that Mti3 facilitates the function of Mti2 in mitochondrial translation initiation. Our findings also support the view that the importance of the mitochondrial translation initiation factors varies among the organisms.