• Medientyp: E-Artikel
  • Titel: Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe
  • Beteiligte: Lenoir, Jonathan; Graae, Bente Jessen; Aarrestad, Per Arild; Alsos, Inger Greve; Armbruster, W. Scott; Austrheim, Gunnar; Bergendorff, Claes; Birks, H. John B.; Bråthen, Kari Anne; Brunet, Jörg; Bruun, Hans Henrik; Dahlberg, Carl Johan; Decocq, Guillaume; Diekmann, Martin; Dynesius, Mats; Ejrnæs, Rasmus; Grytnes, John‐Arvid; Hylander, Kristoffer; Klanderud, Kari; Luoto, Miska; Milbau, Ann; Moora, Mari; Nygaard, Bettina; Odland, Arvid; [...]
  • Erschienen: Wiley, 2013
  • Erschienen in: Global Change Biology
  • Sprache: Englisch
  • DOI: 10.1111/gcb.12129
  • ISSN: 1354-1013; 1365-2486
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>Recent studies from mountainous areas of small spatial extent (&lt;2500 km<jats:sup>2</jats:sup>) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in <jats:styled-content style="fixed-case">N</jats:styled-content>orthern <jats:styled-content style="fixed-case">E</jats:styled-content>urope encompassing a large array of topographic complexities. We first combined plant community data, <jats:styled-content style="fixed-case">E</jats:styled-content>llenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within &lt;1000‐m<jats:sup>2</jats:sup> units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km<jats:sup>2</jats:sup> units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km<jats:sup>2</jats:sup> units. <jats:styled-content style="fixed-case">E</jats:styled-content>llenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (<jats:styled-content style="fixed-case">J</jats:styled-content>une, <jats:styled-content style="fixed-case">J</jats:styled-content>uly, <jats:styled-content style="fixed-case">A</jats:styled-content>ugust). Growing‐season CiT range within 1‐km<jats:sup>2</jats:sup> units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (<jats:styled-content style="fixed-case">SD</jats:styled-content> = 0.84 °C) and 2.68 °C (<jats:styled-content style="fixed-case">SD</jats:styled-content> = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km<jats:sup>2</jats:sup> units was, on average, 1.8 times greater (0.32 °C km<jats:sup>−1</jats:sup>) than spatial turnover in growing‐season GiT (0.18 °C km<jats:sup>−1</jats:sup>). We conclude that thermal variability within 1‐km<jats:sup>2</jats:sup> units strongly increases local spatial buffering of future climate warming across <jats:styled-content style="fixed-case">N</jats:styled-content>orthern <jats:styled-content style="fixed-case">E</jats:styled-content>urope, even in the flattest terrains.</jats:p>