• Medientyp: E-Artikel
  • Titel: Multiphase Modeling of Geologic Carbon Sequestration in Saline Aquifers
  • Beteiligte: Bandilla, Karl W.; Celia, Michael A.; Birkholzer, Jens T.; Cihan, Abdullah; Leister, Evan C.
  • Erschienen: Wiley, 2015
  • Erschienen in: Groundwater
  • Sprache: Englisch
  • DOI: 10.1111/gwat.12315
  • ISSN: 0017-467X; 1745-6584
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>Abstract</jats:title><jats:p>Geologic carbon sequestration (<jats:styled-content style="fixed-case">GCS</jats:styled-content>) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface <jats:styled-content style="fixed-case">CO<jats:sub>2</jats:sub></jats:styled-content> and resident brine migration for the design of injection operations, to demonstrate the permanence of <jats:styled-content style="fixed-case">CO<jats:sub>2</jats:sub></jats:styled-content> storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of <jats:styled-content style="fixed-case">CO<jats:sub>2</jats:sub></jats:styled-content> and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model <jats:styled-content style="fixed-case">GCS</jats:styled-content>. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific <jats:styled-content style="fixed-case">GCS</jats:styled-content> questions. Application of the modeling approaches is shown using five ongoing or proposed <jats:styled-content style="fixed-case">CO<jats:sub>2</jats:sub></jats:styled-content> injection sites. For the selected sites, the majority of <jats:styled-content style="fixed-case">GCS</jats:styled-content> models follow a simplified multiphase approach, especially for questions related to injection and local‐scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the <jats:styled-content style="fixed-case">CO<jats:sub>2</jats:sub></jats:styled-content> migration at one site to examine details of <jats:styled-content style="fixed-case">CO<jats:sub>2</jats:sub></jats:styled-content> migration under the caprock.</jats:p>