Beschreibung:
Due to problems caused by noise in industrial environment and in human daily life, techniques of noise control have received increasing attention from engineers and researchers lately. More recently, the use of piezeletric elements as sensors and/or actuators in noise and vibration control systems has been extensively investigated. The main advantage of the use of such devices is that they can be easily integrated to the mechanical system with little added mass and relatively high control authority. The present paper addresses a technique of active control of sound transmitted through a rectangular, thin, simply supported plate by employing multiple piezeletric patches bonded to the plate’s surface. A harmonic plane wave incident on one side of the plate is considered to be the primary noise source. Aiming at minimizing the noise transmitted to the other side of the plate, bending motion is induced through the piezeletric patches so that the plate behaves as a secondary sound source. The paper brings the development of the system mathematical model which enables to obtain the spatial distribution of sound pressure radiated through the plate in the far field. An optimal control technique providing the voltage control signals for the activation of the piezoelectric patches is presented, based on the minimization of a cost function representing the mean square integral of the sound pressure radiated in a semi-sphere in far field. It is also proposed a methodology for the optimal placement on the piezelectric patches using Genetic Algorithms. (To be presented in Portuguese.)