Sie können Bookmarks mittels Listen verwalten, loggen Sie sich dafür bitte in Ihr SLUB Benutzerkonto ein.
Medientyp:
E-Artikel
Titel:
Model ensembles of ecosystem services fill global certainty and capacity gaps
Beteiligte:
Willcock, Simon;
Hooftman, Danny A. P.;
Neugarten, Rachel A.;
Chaplin-Kramer, Rebecca;
Barredo, José I.;
Hickler, Thomas;
Kindermann, Georg;
Lewis, Amy R.;
Lindeskog, Mats;
Martínez-López, Javier;
Bullock, James M.
Erschienen:
American Association for the Advancement of Science (AAAS), 2023
Erschienen in:
Science Advances, 9 (2023) 14
Sprache:
Englisch
DOI:
10.1126/sciadv.adf5492
ISSN:
2375-2548
Entstehung:
Anmerkungen:
Beschreibung:
Sustaining ecosystem services (ES) critical to human well-being is hindered by many practitioners lacking access to ES models (“the capacity gap”) or knowledge of the accuracy of available models (“the certainty gap”), especially in the world’s poorer regions. We developed ensembles of multiple models at an unprecedented global scale for five ES of high policy relevance. Ensembles were 2 to 14% more accurate than individual models. Ensemble accuracy was not correlated with proxies for research capacity, indicating that accuracy is distributed equitably across the globe and that countries less able to research ES suffer no accuracy penalty. By making these ES ensembles and associated accuracy estimates freely available, we provide globally consistent ES information that can support policy and decision-making in regions with low data availability or low capacity for implementing complex ES models. Thus, we hope to reduce the capacity and certainty gaps impeding local- to global-scale movement toward ES sustainability.