• Medientyp: E-Artikel
  • Titel: Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity
  • Beteiligte: Shrock, Ellen; Fujimura, Eric; Kula, Tomasz; Timms, Richard T.; Lee, I-Hsiu; Leng, Yumei; Robinson, Matthew L.; Sie, Brandon M.; Li, Mamie Z.; Chen, Yuezhou; Logue, Jennifer; Zuiani, Adam; McCulloch, Denise; Lelis, Felipe J. N.; Henson, Stephanie; Monaco, Daniel R.; Travers, Meghan; Habibi, Shaghayegh; Clarke, William A.; Caturegli, Patrizio; Laeyendecker, Oliver; Piechocka-Trocha, Alicja; Li, Jonathan Z.; Khatri, Ashok; [...]
  • Erschienen: American Association for the Advancement of Science (AAAS), 2020
  • Erschienen in: Science, 370 (2020) 6520
  • Sprache: Englisch
  • DOI: 10.1126/science.abd4250
  • ISSN: 0036-8075; 1095-9203
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: Profiling coronaviruses Among the coronaviruses that infect humans, four cause mild common colds, whereas three others, including the currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), result in severe infections. Shrock et al. used a technology known as VirScan to probe the antibody repertoires of hundreds of coronavirus disease 2019 (COVID-19) patients and pre–COVID-19 era controls. They identified hundreds of antibody targets, including several antibody epitopes shared by the mild and severe coronaviruses and many specific to SARS-CoV-2. A machine-learning model accurately classified patients infected with SARS-CoV-2 and guided the design of an assay for rapid SARS-CoV-2 antibody detection. The study also looked at how the antibody response and viral exposure history differ in patients with diverging outcomes, which could inform the production of improved vaccine and antibody therapies. Science , this issue p. eabd4250