• Medientyp: E-Artikel
  • Titel: Allometry in desert ant locomotion (Cataglyphis albicans and Cataglyphis bicolor) – does body size matter?
  • Beteiligte: Tross, Johanna; Wolf, Harald; Pfeffer, Sarah Elisabeth
  • Erschienen: The Company of Biologists, 2021
  • Erschienen in: Journal of Experimental Biology
  • Sprache: Englisch
  • DOI: 10.1242/jeb.242842
  • ISSN: 0022-0949; 1477-9145
  • Schlagwörter: Insect Science ; Molecular Biology ; Animal Science and Zoology ; Aquatic Science ; Physiology ; Ecology, Evolution, Behavior and Systematics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:title>ABSTRACT</jats:title> <jats:p>Desert ants show a large range of adaptations to their habitats. They can reach extremely high running speeds, for example, to shorten heat stress during foraging trips. It has recently been examined how fast walking speeds are achieved in different desert ant species. It is intriguing in this context that some species exhibit distinct intraspecific size differences. We therefore performed a complete locomotion analysis over the entire size spectrum of the species Cataglyphis bicolor, and we compared this intraspecific dataset with that of the allometrically similar species Cataglyphis albicans. Emphasis was on the allometry of locomotion: we considered the body size of each animal and analysed the data in terms of relative walking speed. Body size was observed to affect walking parameters, gait patterns and phase relationships in terms of absolute walking speed. Unexpectedly, on a relative scale, all ants tended to show the same overall locomotion strategy at low walking speeds, and significant differences occurred only between C. albicans and C. bicolor at high walking speeds. Our analysis revealed that C. bicolor ants use the same overall strategy across all body sizes, with small ants reaching the highest walking speeds (up to 80 body lengths s−1) by increasing their stride length and incorporating aerial phases. By comparison, C. albicans reached high walking speeds mainly by a high synchrony of leg movement, lower swing phase duration and higher stride frequency ranging up to 40 Hz.</jats:p>
  • Zugangsstatus: Freier Zugang