• Medientyp: E-Artikel
  • Titel: Towards the Andre–Oort conjecture for mixed Shimura varieties: The Ax–Lindemann theorem and lower bounds for Galois orbits of special points
  • Beteiligte: Gao, Ziyang
  • Erschienen: Walter de Gruyter GmbH, 2017
  • Erschienen in: Journal für die reine und angewandte Mathematik (Crelles Journal), 2017 (2017) 732, Seite 85-146
  • Sprache: Englisch
  • DOI: 10.1515/crelle-2014-0127
  • ISSN: 1435-5345; 0075-4102
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: Abstract We prove in this paper the Ax–Lindemann–Weierstraß theorem for all mixed Shimura varieties and discuss the lower bounds for Galois orbits of special points of mixed Shimura varieties. In particular, we reprove a result of Silverberg [57] in a different approach. Then combining these results we prove the André–Oort conjecture unconditionally for any mixed Shimura variety whose pure part is a subvariety of 𝒜 6 n {\mathcal{A}_{6}^{n}} and under the Generalized Riemann Hypothesis for all mixed Shimura varieties of abelian type.