• Medientyp: E-Artikel
  • Titel: Quasi-isometric rigidity for graphs of virtually free groups with two-ended edge groups
  • Beteiligte: Shepherd, Sam; Woodhouse, Daniel J.
  • Erschienen: Walter de Gruyter GmbH, 2022
  • Erschienen in: Journal für die reine und angewandte Mathematik (Crelles Journal), 2022 (2022) 782, Seite 121-173
  • Sprache: Englisch
  • DOI: 10.1515/crelle-2021-0067
  • ISSN: 0075-4102; 1435-5345
  • Schlagwörter: Applied Mathematics ; General Mathematics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: Abstract We study the quasi-isometric rigidity of a large family of finitely generated groups that split as graphs of groups with virtually free vertex groups and two-ended edge groups.Let G be a group that is one-ended, hyperbolic relative to virtually abelian subgroups, and has JSJ decomposition over two-ended subgroups containing only virtually free vertex groups that are not quadratically hanging.Our main result is that any group quasi-isometric to G is abstractly commensurable to G. In particular, our result applies to certain “generic” HNN extensions of a free group over cyclic subgroups.