• Medientyp: E-Artikel
  • Titel: Baranchick-type Estimators of a Multivariate Normal Mean Under the General Quadratic Loss Function
  • Beteiligte: Hamdaoui, Abdenour; Benkhaled, Abdelkader; Terbeche, Mekki
  • Erschienen: Siberian Federal University, 2020
  • Erschienen in: Journal of Siberian Federal University. Mathematics & Physics (2020), Seite 608-621
  • Sprache: Englisch
  • DOI: 10.17516/1997-1397-2020-13-5-608-621
  • ISSN: 2313-6022; 1997-1397
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: The problem of estimating the mean of a multivariate normal distribution by different types of shrinkage estimators is investigated. We established the minimaxity of Baranchick-type estimators for identity covariance matrix and the matrix associated to the loss function is diagonal. In particular the class of James-Stein estimator is presented. The general situation for both matrices cited above is discussed
  • Zugangsstatus: Freier Zugang