• Medientyp: E-Artikel
  • Titel: Effect of welding parameters and the heat input on weld bead profile of laser welded T-joint in structural steel
  • Beteiligte: Unt, Anna; Salminen, Antti
  • Erschienen: Laser Institute of America, 2015
  • Erschienen in: Journal of Laser Applications
  • Sprache: Englisch
  • DOI: 10.2351/1.4906378
  • ISSN: 1042-346X; 1938-1387
  • Schlagwörter: Instrumentation ; Biomedical Engineering ; Atomic and Molecular Physics, and Optics ; Electronic, Optical and Magnetic Materials
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>The high power fiber laser has become one of the most efficient energy sources for deep penetration welding processes used in heavy manufacturing and marine industries. Combinations of cost-efficient, easily automatable process together with fairly mobile and flexible welding equipment have raised high expectations for improved quality and economic feasibility. In this study, the fillet welding of a low alloyed structural steel was studied using a 10 kW fiber laser. Plates of 8 mm thick AH36 were welded as a T-joint configuration in flat (1F) and horizontal (2F) positions using either an autogenous laser welding or a hybrid laser arc welding process. The effect of heat input on the weld bead geometry was investigated using one variable at a time approach. The impact of single process parameter such as laser power of 4.5–6 kW, welding speed of 0.5–2.5 m/min, beam inclination angle of 6°–15°, focal point position of −2 to +2 mm, and welding positions of 1F and 2F were studied. All welds were visually evaluated for weld imperfections described in EN ISO 13919-1 standard. Penetration depth, geometries of the fusion and heat affected zones, and hardness profiles were measured. Produced joints have a high depth to width ratio and a small heat affected zone; full penetration welds with acceptable weld quality on both sides of the joint were produced. The parameter configurations for optimizing the welding processes are proposed.</jats:p>