• Medientyp: E-Artikel
  • Titel: Buzağı Hastalıkları Üzerine Etkili Faktörlerin Sınıflandırılmasında Yapay Sinir Ağları, Rassal Orman Algoritması ve Lojistik Regresyon Analizi Performanslarının Karşılaştırılması Comparison of Artificial Neural Networks, Random Forest Algorithm and Logistic Regression Analysis Performances in Classification of Effective Factors on Calf Diseases
  • Beteiligte: GÜNGÖR, Güven; AKÇAY, Aytaç; SARIÖZKAN, Savaş; ÇELİK, Elif
  • Erschienen: Erciyes Universitesi, 2022
  • Erschienen in: Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 19 (2022) 2, Seite 94-100
  • Sprache: Nicht zu entscheiden
  • DOI: 10.32707/ercivet.1142552
  • ISSN: 1304-7280
  • Schlagwörter: General Medicine
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: Bu çalışmada buzağı hastalıklarına etkili faktörlerin Yapay Sinir Ağları (YSA), Rassal Orman Algoritması (RO) ve Lojistik Regresyon Analizi (LR) ile sınıflandırılması, bu yöntemlerin kullanılabilirliğinin ortaya konulması ve performans-larının karşılaştırılması amaçlanmıştır. Araştırma materyalini 2018-2021 yılları arasında Erciyes Üniversitesi Tarımsal Araştırma ve Uygulama Merkezi’nde tutulan 54 baş buzağıya ait işletme kayıtları oluşturmuştur. İstatistik analizlerde buzağılara ait hastalık geçmişi bağımlı değişken; buzağıların cinsiyeti, ırkı, doğum mevsimi, anne ırkı, anne laktasyon sayısı ise bağımsız değişken olarak belirlenmiştir. Sınıflandırma performansları; duyarlılık, seçicilik, kesinlik, doğruluk, f-ölçümü, Youden indeksi, ROC eğrisi altında kalan alan (AUC) ve Cohen’s kappa katsayısı ile karşılaştırılmıştır. Araş-tırma bulgularına göre, duyarlılık, seçicilik, kesinlik, doğruluk, F-ölçümü, Youden ideksi ve Cohen’s kappa açısından en başarılı sınıflandırıcılar sırasıyla; LR (0.828), YSA (0.947), YSA (0.964), YSA (0.833), YSA (0.857), YSA (0.719), YSA (0.663) olarak bulunmuştur. Sonuç olarak, mevcut sınıflandırma yöntemlerinin buzağı hastalıklarına etkili faktörleri belirli bir yanılma payıyla doğru sınıflandırdığı ve duyarlılık dışındaki bütün performans değerleri için YSA’nın daha başarılı olduğu görülmüştür. Bu yöntemlerin, hayvancılık işletmelerinde buzağı hastalıklarının proaktif yaklaşımla belir-lenmesine ve ekonomik kayıpların önlenmesine imkan sağlayacağı düşünülmektedir.
  • Zugangsstatus: Freier Zugang