• Medientyp: E-Artikel
  • Titel: Blood glucose forecasting from temporal and static information in children with T1D
  • Beteiligte: Marx, Alexander; Di Stefano, Francesco; Leutheuser, Heike; Chin-Cheong, Kieran; Pfister, Marc; Burckhardt, Marie-Anne; Bachmann, Sara; Vogt, Julia E.
  • Erschienen: Frontiers Media SA, 2023
  • Erschienen in: Frontiers in Pediatrics
  • Sprache: Nicht zu entscheiden
  • DOI: 10.3389/fped.2023.1296904
  • ISSN: 2296-2360
  • Schlagwörter: Pediatrics, Perinatology and Child Health
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:sec><jats:title>Background</jats:title><jats:p>The overarching goal of blood glucose forecasting is to assist individuals with type 1 diabetes (T1D) in avoiding hyper- or hypoglycemic conditions. While deep learning approaches have shown promising results for blood glucose forecasting in adults with T1D, it is not known if these results generalize to children. Possible reasons are physical activity (PA), which is often unplanned in children, as well as age and development of a child, which both have an effect on the blood glucose level.</jats:p></jats:sec><jats:sec><jats:title>Materials and Methods</jats:title><jats:p>In this study, we collected time series measurements of glucose levels, carbohydrate intake, insulin-dosing and physical activity from children with T1D for one week in an ethics approved prospective observational study, which included daily physical activities. We investigate the performance of state-of-the-art deep learning methods for adult data—(dilated) recurrent neural networks and a transformer—on our dataset for short-term (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="IM1"><mml:mn>30</mml:mn></mml:math></jats:inline-formula> min) and long-term (<jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="IM2"><mml:mn>2</mml:mn></mml:math></jats:inline-formula> h) prediction. We propose to integrate static patient characteristics, such as age, gender, BMI, and percentage of basal insulin, to account for the heterogeneity of our study group.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Integrating static patient characteristics (SPC) proves beneficial, especially for short-term prediction. LSTMs and GRUs with SPC perform best for a prediction horizon of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="IM3"><mml:mn>30</mml:mn></mml:math></jats:inline-formula> min (RMSE of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="IM4"><mml:mn>1.66</mml:mn></mml:math></jats:inline-formula> mmol/l), a vanilla RNN with SPC performs best across different prediction horizons, while the performance significantly decays for long-term prediction. For prediction during the night, the best method improves to an RMSE of <jats:inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="IM5"><mml:mn>1.50</mml:mn></mml:math></jats:inline-formula> mmol/l. Overall, the results for our baselines and RNN models indicate that blood glucose forecasting for children conducting regular physical activity is more challenging than for previously studied adult data.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>We find that integrating static data improves the performance of deep-learning architectures for blood glucose forecasting of children with T1D and achieves promising results for short-term prediction. Despite these improvements, additional clinical studies are warranted to extend forecasting to longer-term prediction horizons.</jats:p></jats:sec>
  • Zugangsstatus: Freier Zugang