Pizarro Inostroza, María Gabriela;
Navas González, Francisco Javier;
Landi, Vincenzo;
León Jurado, Jose Manuel;
Delgado Bermejo, Juan Vicente;
Fernández Álvarez, Javier;
Martínez Martínez, María del Amparo
Goat Milk Nutritional Quality Software-Automatized Individual Curve Model Fitting, Shape Parameters Calculation and Bayesian Flexibility Criteria Comparison
Sie können Bookmarks mittels Listen verwalten, loggen Sie sich dafür bitte in Ihr SLUB Benutzerkonto ein.
Medientyp:
E-Artikel
Titel:
Goat Milk Nutritional Quality Software-Automatized Individual Curve Model Fitting, Shape Parameters Calculation and Bayesian Flexibility Criteria Comparison
Beteiligte:
Pizarro Inostroza, María Gabriela;
Navas González, Francisco Javier;
Landi, Vincenzo;
León Jurado, Jose Manuel;
Delgado Bermejo, Juan Vicente;
Fernández Álvarez, Javier;
Martínez Martínez, María del Amparo
Erschienen:
MDPI AG, 2020
Erschienen in:
Animals, 10 (2020) 9, Seite 1693
Sprache:
Englisch
DOI:
10.3390/ani10091693
ISSN:
2076-2615
Entstehung:
Anmerkungen:
Beschreibung:
SPSS syntax was described to evaluate the individual performance of 49 linear and non-linear models to fit the milk component evolution curve of 159 Murciano-Granadina does selected for genotyping analyses. Peak and persistence for protein, fat, dry matter, lactose, and somatic cell counts were evaluated using 3107 controls (3.91 ± 2.01 average lactations/goat). Best-fit (adjusted R2) values (0.548, 0.374, 0.429, and 0.624 for protein, fat, dry matter, and lactose content, respectively) were reached by the five-parameter logarithmic model of Ali and Schaeffer (ALISCH), and for the three-parameter model of parabolic yield-density (PARYLDENS) for somatic cell counts (0.481). Cross-validation was performed using the Minimum Mean-Square Error (MMSE). Model comparison was performed using Residual Sum of Squares (RSS), Mean-Squared Prediction Error (MSPE), adjusted R2 and its standard deviation (SD), Akaike (AIC), corrected Akaike (AICc), and Bayesian information criteria (BIC). The adjusted R2 SD across individuals was around 0.2 for all models. Thirty-nine models successfully fitted the individual lactation curve for all components. Parametric and computational complexity promote variability-capturing properties, while model flexibility does not significantly (p > 0.05) improve the predictive and explanatory potential. Conclusively, ALISCH and PARYLDENS can be used to study goat milk composition genetic variability as trustable evaluation models to face future challenges of the goat dairy industry.