• Medientyp: E-Artikel
  • Titel: Optimization and Validation of a Novel Three-Dimensional Co-Culture System in Decellularized Human Liver Scaffold for the Study of Liver Fibrosis and Cancer
  • Beteiligte: Thanapirom, Kessarin; Caon, Elisabetta; Papatheodoridi, Margarita; Frenguelli, Luca; Al-Akkad, Walid; Zhenzhen, Zhang; Vilia, Maria Giovanna; Pinzani, Massimo; Mazza, Giuseppe; Rombouts, Krista
  • Erschienen: MDPI AG, 2021
  • Erschienen in: Cancers
  • Sprache: Englisch
  • DOI: 10.3390/cancers13194936
  • ISSN: 2072-6694
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>The introduction of new preclinical models for in vitro drug discovery and testing based on 3D tissue-specific extracellular matrix (ECM) is very much awaited. This study was aimed at developing and validating a co-culture model using decellularized human liver 3D ECM scaffolds as a platform for anti-fibrotic and anti-cancer drug testing. Decellularized 3D scaffolds obtained from healthy and cirrhotic human livers were bioengineered with LX2 and HEPG2 as single and co-cultures for up to 13 days and validated as a new drug-testing platform. Pro-fibrogenic markers and cancer phenotypic gene/protein expression and secretion were differently affected when single and co-cultures were exposed to TGF-β1 with specific ECM-dependent effects. The anti-fibrotic efficacy of Sorafenib significantly reduced TGF-β1-induced pro-fibrogenic effects, which coincided with a downregulation of STAT3 phosphorylation. The anti-cancer efficacy of Regorafenib was significantly reduced in 3D bioengineered cells when compared to 2D cultures and dose-dependently associated with cell apoptosis by cleaved PARP-1 activation and P-STAT3 inhibition. Regorafenib reversed TGF-β1-induced P-STAT3 and SHP-1 through induction of epithelial mesenchymal marker E-cadherin and downregulation of vimentin protein expression in both co-cultures engrafting healthy and cirrhotic 3D scaffolds. In their complex, the results of the study suggest that this newly proposed 3D co-culture platform is able to reproduce the natural physio-pathological microenvironment and could be employed for anti-fibrotic and anti-HCC drug screening.</jats:p>
  • Zugangsstatus: Freier Zugang