Beteiligte:
Bilińska, Lucyna;
Blus, Kazimierz;
Bilińska, Magdalena;
Gmurek, Marta
Erschienen:
MDPI AG, 2020
Erschienen in:
Catalysts, 10 (2020) 6, Seite 611
Sprache:
Englisch
DOI:
10.3390/catal10060611
ISSN:
2073-4344
Entstehung:
Anmerkungen:
Beschreibung:
One of the recent trends in textile wastewater treatment has become catalytic ozonation. The necessity of effective color removal in a short treatment time is a standard during industrial implementation. At the same time, efficient chemical oxygen demand (COD), total organic carbon (TOC), and toxic by-product removal are highly expected. This study presents the results of a catalytic ozonation treatment. Three types of catalysts: a metal oxide (TiO2 as P25 by Degussa), activated carbon (nano-powder by Sigma, AC), and metal particles (platinum, 1% wt. supported on AC matrix by Sigma, Pt–AC) have been applied. The investigations were conducted for real industrial wastewater originated in textile dyeing with Reactive Black 5 dye (RB5). The experiments ran for the raw wastewater (without pretreatment), exposed blocking of the catalytic action by all used catalysts. The catalytic effect could be observed when catalytic ozonation was used as a polishing step after electrocoagulation (EC). Although the catalytic effect could be observe for all catalysts then, especially in the removal of colorless by-products, the AC was exposed as the most effective. This contributed to 35% and 40% of TOC and COD removal. While only 18% and 23% of TOC and COD were removed in the same process without AC. The decrease in toxicity was 30%. The results of the study revealed the complexity of the issue and resulted in an extensive discussion devoted to the basis of the catalytic activity of each catalyst.