• Medientyp: E-Artikel
  • Titel: On the Solvability of Mixed-Type Fractional-Order Non-Linear Functional Integral Equations in the Banach Space C(I)
  • Beteiligte: Pathak, Vijai Kumar; Mishra, Lakshmi Narayan; Mishra, Vishnu Narayan; Baleanu, Dumitru
  • Erschienen: MDPI AG, 2022
  • Erschienen in: Fractal and Fractional, 6 (2022) 12, Seite 744
  • Sprache: Englisch
  • DOI: 10.3390/fractalfract6120744
  • ISSN: 2504-3110
  • Schlagwörter: Statistics and Probability ; Statistical and Nonlinear Physics ; Analysis
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: This paper is concerned with the existence of the solution to mixed-type non-linear fractional functional integral equations involving generalized proportional (κ,ϕ)-Riemann–Liouville along with Erdélyi–Kober fractional operators on a Banach space C([1,T]) arising in biological population dynamics. The key findings of the article are based on theoretical concepts pertaining to the fractional calculus and the Hausdorff measure of non-compactness (MNC). To obtain this goal, we employ Darbo’s fixed-point theorem (DFPT) in the Banach space. In addition, we provide two numerical examples to demonstrate the applicability of our findings to the theory of fractional integral equations.
  • Zugangsstatus: Freier Zugang