• Medientyp: E-Artikel
  • Titel: The Structure and Function of Biomaterial Endolysin EFm1 from E. faecalis Phage
  • Beteiligte: Zhou, Xuerong; Zeng, Xiaotao; Wang, Li; Zheng, Yanhui; Zhang, Guixiang; Cheng, Wei
  • Erschienen: MDPI AG, 2022
  • Erschienen in: Materials
  • Sprache: Englisch
  • DOI: 10.3390/ma15144879
  • ISSN: 1996-1944
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>The endolysin EFm1 from the E. faecalis 002 (002) phage IME-EF1 efficiently lyses E. faecalis, a gram-positive bacterium that severely threatens human health. Here, the structure and lytic activity of EFm1 toward E. faecalis were further investigated. Lytic activity shows that EFm1 specifically lyses 002 and 22 other clinically isolated E. faecalis, but not E. faecalis 945. Therefore, EFm1 may be an alternative biomaterial to prevent and treat diseases caused by E. faecalis. A structural analysis showed that EFm1D166Q is a tetramer consisting of one full-length unit with additional C-terminal domains (CTDs), while EFm1166–237 aa is an octamer in an asymmetric unit. Several crucial domains and novel residues affecting the lytic activity of EFm1 were identified, including calcium-binding sites (D20, D22 and D31), a putative classic amidohydrolase catalytic triad (C29, H90 and D108), a tetramerization site (M168 and M227), putative ion channel sites (IGGK, 186–198 aa), and other residues (R208 and Y209). Furthermore, EFm1 exhibited no significant activity when expressed alone in vivo, and IME-EF1 lytic activity decreased when efm1 was knocked down. These findings provide valuable insights into the molecule mechanism of a potential functional biomaterial for the treatment of the disease caused by the opportunistic pathogen E. faecalis.</jats:p>
  • Zugangsstatus: Freier Zugang