• Medientyp: E-Artikel
  • Titel: Balanced Nontransitive Dice: Existence and Probability
  • Beteiligte: Kim, Dohyeon; Kim, Ringi; Lee, Wonjun; Lim, Yuhyeon; So, Yoojin
  • Erschienen: The Electronic Journal of Combinatorics, 2024
  • Erschienen in: The Electronic Journal of Combinatorics
  • Sprache: Nicht zu entscheiden
  • DOI: 10.37236/11918
  • ISSN: 1077-8926
  • Schlagwörter: Computational Theory and Mathematics ; Geometry and Topology ; Theoretical Computer Science ; Applied Mathematics ; Discrete Mathematics and Combinatorics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>A triple $(A,B,C)$ of dice is called nontransitive if each of $P(A&lt;B)$, $P(B&lt;C)$, and $P(C&lt;A)$ is greater than $\frac12$ and called balanced if $P(A&lt;B)=P(B&lt;C)=P(C&lt;A)$. From the result of Trybuła, it is known that $P(A&lt;B)$ is less than $\frac{-1+\sqrt{5}}{2}$, the golden ratio, for every balanced nontransitive triple $(A,B,C)$ of dice. Schaefer asked whether this upper bound is tight, and Hur and Kim conjectured that the upper bound can be reduced to $\frac12+\frac19$. In this paper, we characterize all possible probabilities $P(A&lt;B)$ for balanced nontransitive triples $(A,B,C)$ of dice. Precisely, we prove that, for every rational $\frac12 &lt;q&lt;\frac{-1+\sqrt{5}}{2}$, there exists a balanced nontransitive triple $(A,B,C)$ of dice with $P(A&lt;B)=q$, which disproves Hur and Kim's conjecture and answers Schaefer's question.&#x0D; We also characterize all triples $(m,n,\ell)$ of positive integers such that there exists a balanced nontransitive triple $(A,B,C)$ of dice, where $A$, $B$, and $C$ are $m$-sided, $n$-sided, and $\ell$-sided dice, respectively. This generalizes Schaefer and Schweig's result showing the existence of a balanced nontransitive triple of $n$-sided dice for every $n\ge 3$.</jats:p>
  • Zugangsstatus: Freier Zugang