• Medientyp: E-Artikel
  • Titel: On pull-backs of the universal connection
  • Beteiligte: Tapp, Kristopher
  • Erschienen: Canadian Mathematical Society, 2022
  • Erschienen in: Canadian Mathematical Bulletin, 65 (2022) 4, Seite 845-859
  • Sprache: Englisch
  • DOI: 10.4153/s0008439521000989
  • ISSN: 1496-4287; 0008-4395
  • Schlagwörter: General Mathematics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: AbstractNarasihman and Ramanan proved in [Amer. J. Math. 83(1961), 563–572] that an arbitrary connection in a vector bundle over a base space B can be obtained as the pull-back (via a correctly chosen classifying map from B into the appropriate Grassmannian) of the universal connection in the universal bundle over the Grassmannian. The purpose of this paper is to relate geometric properties of the classifying map to geometric properties of the pulled-back connection. More specifically, we describe conditions on the classifying map under which the pulled-back connection: (1) is fat (in the sphere bundle), (2) has a parallel curvature tensor, and (3) induces a connection metric with nonnegative sectional curvature on the vector bundle (or positive sectional curvature on the sphere bundle).