• Medientyp: E-Artikel
  • Titel: A rigid analytic proof that the Abel–Jacobi map extends to compact-type models
  • Beteiligte: Dupuy, Taylor; Rabinoff, Joseph
  • Erschienen: Canadian Mathematical Society, 2024
  • Erschienen in: Canadian Mathematical Bulletin (2024), Seite 1-7
  • Sprache: Englisch
  • DOI: 10.4153/s0008439524000031
  • ISSN: 0008-4395; 1496-4287
  • Schlagwörter: General Mathematics
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: Abstract Let K be a non-Archimedean valued field with valuation ring R. Let $C_\eta $ be a K-curve with compact-type reduction, so its Jacobian $J_\eta $ extends to an abelian R-scheme J. We prove that an Abel–Jacobi map $\iota \colon C_\eta \to J_\eta $ extends to a morphism $C\to J$ , where C is a compact-type R-model of J, and we show this is a closed immersion when the special fiber of C has no rational components. To do so, we apply a rigid-analytic “fiberwise” criterion for a morphism to extend to integral models, and geometric results of Bosch and Lütkebohmert on the analytic structure of $J_\eta $ .