• Medientyp: E-Artikel
  • Titel: Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns
  • Beteiligte: Robertson, Aaron
  • Erschienen: Centre pour la Communication Scientifique Directe (CCSD), 1999
  • Erschienen in: Discrete Mathematics & Theoretical Computer Science, Vol. 3 no. 4 (1999)
  • Sprache: Englisch
  • DOI: 10.46298/dmtcs.261
  • ISSN: 1365-8050
  • Schlagwörter: Discrete Mathematics and Combinatorics ; General Computer Science ; Theoretical Computer Science
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: We prove that the number of permutations which avoid 132-patterns and have exactly one 123-pattern, equals $(n-2)2^{n-3}$, for $n \ge 3$. We then give a bijection onto the set of permutations which avoid 123-patterns and have exactly one 132-pattern. Finally, we show that the number of permutations which contain exactly one 123-pattern and exactly one 132-pattern is $(n-3)(n-4)2^{n-5}$, for $n \ge 5$.