• Medientyp: E-Artikel
  • Titel: Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
  • Beteiligte: Azevedo, J. S.; Afonso, S. M.; Silva, M. P. G.
  • Erschienen: Brazilian Society for Computational and Applied Mathematics (SBMAC), 2020
  • Erschienen in: TEMA (São Carlos), 21 (2020) 3, Seite 521
  • Sprache: Nicht zu entscheiden
  • DOI: 10.5540/tema.2020.021.03.521
  • ISSN: 2179-8451; 1677-1966
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: The collocation method based on Chebyshev basis functions, coupled Picard iterative process, is proposed to solve a functional Volterra integral equation of the second kind. Using the Banach Fixed Point Theorem, we prove theorems on the existence and uniqueness solutions in the L2-norm. We also provide the convergence and stability analysis of the proposed method, which indicates that the numerical errors in the L2-norm decay exponentially, provided that the kernel function is sufficiently smooth. Numerical results are presented and they confirm the theoretical prediction of the exponential rate of convergence.
  • Zugangsstatus: Freier Zugang