• Medientyp: E-Artikel
  • Titel: Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody
  • Beteiligte: Favuzza, Paola; Guffart, Elena; Tamborrini, Marco; Scherer, Bianca; Dreyer, Anita M; Rufer, Arne C; Erny, Johannes; Hoernschemeyer, Joerg; Thoma, Ralf; Schmid, Georg; Gsell, Bernard; Lamelas, Araceli; Benz, Joerg; Joseph, Catherine; Matile, Hugues; Pluschke, Gerd; Rudolph, Markus G
  • Erschienen: eLife Sciences Publications, Ltd, 2017
  • Erschienen in: eLife
  • Sprache: Englisch
  • DOI: 10.7554/elife.20383
  • ISSN: 2050-084X
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <jats:p>Invasion of erythrocytes by Plasmodial merozoites is a composite process involving the interplay of several proteins. Among them, the Plasmodium falciparum Cysteine-Rich Protective Antigen (PfCyRPA) is a crucial component of a ternary complex, including Reticulocyte binding-like Homologous protein 5 (PfRH5) and the RH5-interacting protein (PfRipr), essential for erythrocyte invasion. Here, we present the crystal structures of PfCyRPA and its complex with the antigen-binding fragment of a parasite growth inhibitory antibody. PfCyRPA adopts a 6-bladed β-propeller structure with similarity to the classic sialidase fold, but it has no sialidase activity and fulfills a purely non-enzymatic function. Characterization of the epitope recognized by protective antibodies may facilitate design of peptidomimetics to focus vaccine responses on protective epitopes. Both in vitro and in vivo anti-PfCyRPA and anti-PfRH5 antibodies showed more potent parasite growth inhibitory activity in combination than on their own, supporting a combined delivery of PfCyRPA and PfRH5 in vaccines.</jats:p>
  • Zugangsstatus: Freier Zugang