• Medientyp: E-Artikel
  • Titel: Succession of Microphytobenthos in a Restored Coastal Wetland
  • Beteiligte: Currin, Carolyn A.; Levin, Lisa A.
  • Erschienen: Estuarine Research Federation, 2007
  • Erschienen in: Estuaries and Coasts
  • Sprache: Englisch
  • ISSN: 1559-2723; 1559-2731
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: <p>Sediment microphytobenthos, such as diatoms and photosynthetic bacteria, are functionally important components of food webs and are key mediators of nutrient dynamics in marine wetlands. The medium to long-term recovery of benthic microproducers in restored habitats designed to improve degraded coastal wetland sites is largely unknown. Using taxon-specific photopigments, we describe the composition of microphytobenthic communities in a large restoration site in southern California and differences in the temporal recovery of biomass (chlorophyll a), composition, and taxonomic diversity between vegetated Spartina foliosa salt marsh and unvegetated mudflat. Visually distinct, spatially discreet, microphytobenthic patches appeared after no more than 7 mo within the restoration site and were distinguished by significant differences in biomass, taxonomic diversity, and the relative abundance of cyanobacteria versus diatoms. Sediment chlorophyll a concentrations within the restored site were similar to concentrations in nearby natural habitat 0.2-2.2 yr following marsh creation, suggesting rapid colonization by microproducers. Restored Spartina marsh very rapidly (between 0.2 and 1.2 yr) acquired microphytobenthic communities of similar composition and diversity to those in natural Spartina habitat, but restored mudflats took at least 1.6 to 2.2 yr to resemble natural mudflats. These results suggest relatively rapid recovery of microphytobenthic communities at the level of major taxonomic groups. Sediment features, such as pore water salinity and Spartina density, explained little variation in microphytobenthic taxonomic composition. The data imply that provision of structural heterogeneity in wetland construction (such as pools and vascular plants) might speed development of microproducer communities, but no direct seeding of sediment microfloras may be necessary.</p>