• Medientyp: E-Book
  • Titel: Gaussian Mixture and Kernel Density-Based Hybrid Model for Volatility Behavior Extraction From Public Financial Data
  • Beteiligte: Tigani, Smail [Verfasser:in]; Chaibi, Hasna [Verfasser:in]; Saadane, Rachid [Verfasser:in]
  • Erschienen: 2019
  • Sprache: Englisch
  • DOI: https://doi.org/10.3390/data4010019
  • Identifikator:
  • Schlagwörter: Finanzmarkt ; Devisen ; statistische Methode ; Algorithmus ; künstliche Intelligenz ; foreign exchange market ; gaussian mixture model ; kernel density estimation ; algorithmic trading
  • Entstehung:
  • Anmerkungen: Veröffentlichungsversion
    begutachtet (peer reviewed)
    In: Data ; 4 (2019) 1
  • Beschreibung: This paper carried out a hybrid clustering model for foreign exchange market volatility clustering. The proposed model is built using a Gaussian Mixture Model and the inference is done using an Expectation Maximization algorithm. A mono-dimensional kernel density estimator is used in order to build a probability density based on all historical observations. That allows us to evaluate the behavior’s probability of each symbol of interest. The computation result shows that the approach is able to pinpoint risky and safe hours to trade a given currency pair.
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung (CC BY)