> Details
Laurent-Thiébaut, Christine
[Author]
Théorie des fonctions holomorphes de plusieurs variables
Sharing
Reference
management
Direct link
Bookmarks
Remove from
bookmarks
Share this by email
Share this on Twitter
Share this on Facebook
Share this on Whatsapp
- Media type: E-Book
- Title: Théorie des fonctions holomorphes de plusieurs variables : Une introduction
-
Contains:
Frontmatter
CHEZ LE MÊME ÉDITEUR
Table des matières
Avant-propos
Introduction
I Propriétés élémentaires locales des fonctions holomorphes de plusieurs variables complexes
1 Notations et définitions
2 Formule de Cauchy dans les polydisques
3 Théorème de l'application ouverte
4 Suites de fonctions holomorphes
5 Applications holomorphes
6 Quelques théorèmes d'extension holomorphe
II Courants. structures complexes
1 Courants
2 Régularisation
3 Indice de Kronecker
4 Variétés analytiques complexes
5 Structures complexes
6 Formes différentielles de type (p. q)
7 Opérateur δ cohomologie de Dolbeault
8 Espace tangent complexe au bord dun domaine
III Noyau et formule de Bochner-Martinelli . Applications
1 Noyau et formule de Bochner-Martinelli-Koppelman Applications
2 Résolubilité du δ pour une donnée à support compact
3 Régularité du δ
4 Phénomène de Hartogs
IV Transformée de Bochner-Martinelli et extension de fonctions CR
1 Transformée de Bochner-Martineili
2 Fonctions CR sur une hypersurface réelle
3 Théorème de Bochner
4 Formule de Stokes pour les fonctions CR
5 Primitives du noyau de Bochner-Martinelli
6 Un théorème d'extension de fonctions CR
V Extension de fonctions holomorphes et de fonctions CR dans les variétés
1 Cohomologie à support compact et phénomène de Hartogs
2 Extension de fonctions CR de classe C
3 Formule de Cauchy-Fantappié-Lemme de Dolbeault
4 Isomorphisme de Dolbeault
5 Théorème de Bochner et extension de fonctions CR dans les variétés
VI Domaines d'holomorphie et pseudoconvexité
1 Domaines d'holomorphie et convexité holomorphe
2 Fonctions plurisousharmoniques
3 Pseudoconvexité
VII Problème de Levi et résolution du δ dans les domaines strictement pseudoconvexes
Introduction
1 Résolution du δ avec estimations holdériennes dans les ouverts strictement convexes
2 Approximation uniforme locale des formes δ-fermées dans les domaines strictement pseudoconvexes
3 Finitude de la cohomologie de Dolbeault dans les domaines strictement pseudoconvexes
4 Invariance de la cohomologie de Dolbeault par les extensions strictement pseudoconvexes
5 Théorème d'annulation pour la cohomologie de Dolbeault dans les domaines strictement pseudoconvexes
6 Formule intégrale pour résoudre le δ avec estimation holdérienne dans les domaines strictement pseudoconvexes
7 Problème de Levi dans C
8 Problème de Levi dans les variétés analytiques complexes
VIII Caractérisation des singularités illusoires pour les fonctions CR sur un bord strictement pseudoconvexe
1 Réduction au cas des fonctions continues
2 Cas de la dimension 2
3 Caractérisation cohomologique en dimensionn > 2
4 Caractérisation des singularités illusoires faibles
Annexe A
1 Variétés différentiables
2 Partitions de l’unité
3 Espace cotangent en un point - Formes différentielles de degré 1
4 Espace tangent en un point-Champs de vecteurs
5 Algèbre des formes différentielles
6 Intégration des formes différentielles
7 Formule de Stokes
Annexe B
Annexe C
Bibliographie
Index des notations
Index terminologique
- Contributor: Laurent-Thiébaut, Christine [Author]
-
Published:
Les Ulis: EDP Sciences, 1997
- Published in: Savoirs actuels
- Extent: 1 Online-Ressource (257 p.)
- Language: French
- DOI: 10.1051/978-2-86883-379-2
- ISBN: 9782868833792
- Identifier:
- Keywords: MATHEMATICS / General
- Origination:
-
Footnote:
In French
- Description: Une introduction à la théorie des fonctions holomorphes de plusieurs variables dans Cn et dans les variétés analytiques complexes. La présentation, suivant la méthode des représentations intégrales associées à la technique des bosses de Grauert, permet le prolongement naturel des techniques utilisées dans la théorie des fonctions holomorphes à une variable
- Access State: Restricted Access | Information to licenced electronic resources of the SLUB