• Media type: E-Article
  • Title: Atomic-scale quantification of charge densities in two-dimensional materials
  • Contributor: Müller-Caspary, Knut [Author]; Duchamp, Martial [Author]; Soltau, Heike [Author]; Wehling, Tim [Author]; Dunin-Borkowski, Rafal [Author]; Van Aert, Sandra [Author]; Rosenauer, Andreas [Author]; Rösner, Malte [Author]; Migunov, Vadim [Author]; Winkler, Florian [Author]; Yang, Hao [Author]; Huth, Martin [Author]; Ritz, Robert [Author]; Simson, Martin [Author]; Ihle, Sebastian [Author]
  • imprint: Inst., 2018
  • Published in: Physical review / B 98(12), 121408 (2018). doi:10.1103/PhysRevB.98.121408
  • Language: English
  • DOI: https://doi.org/10.1103/PhysRevB.98.121408
  • ISSN: 1094-1622; 0556-2805; 1550-235X; 1098-0121; 0163-1829; 1095-3795; 2469-9969; 2469-9950
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: The charge density is among the most fundamental solid state properties determining bonding, electrical characteristics, and adsorption or catalysis at surfaces. While atomic-scale charge densities have as yet been retrieved by solid state theory, we demonstrate both charge density and electric field mapping across a mono-/bilayer boundary in 2D MoS2 by momentum-resolved scanning transmission electron microscopy. Based on consistency of the four-dimensional experimental data, statistical parameter estimation and dynamical electron scattering simulations using strain-relaxed supercells, we are able to identify an AA-type bilayer stacking and charge depletion at the Mo-terminated layer edge.
  • Access State: Open Access