• Media type: E-Article
  • Title: A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%
  • Contributor: Köhler, Malte [Author]; Pomaska, Manuel [Author]; Li, Shenghao [Author]; Eberst, Alexander [Author]; Luysberg, Martina [Author]; Qiu, Kaifu [Author]; Isabella, Olindo [Author]; Finger, Friedhelm [Author]; Kirchartz, Thomas [Author]; Rau, Uwe [Author]; Ding, Kaining [Author]; Procel, Paul [Author]; Santbergen, Rudi [Author]; Zamchiy, Alexandr [Author]; Macco, Bart [Author]; Lambertz, Andreas [Author]; Duan, Weiyuan [Author]; Cao, Pengfei [Author]; Klingebiel, Benjamin [Author]
  • Published: Nature Publishing Group, 2021
  • Published in: Nature energy 6, 529–537 (2021). doi:10.1038/s41560-021-00806-9
  • Language: English
  • DOI: https://doi.org/10.1038/s41560-021-00806-9
  • ISSN: 2058-7546
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: A highly transparent passivating contact (TPC) as front contact for crystalline silicon (c-Si) solar cells could in principle combine high conductivity, excellent surface passivation and high optical transparency. However, the simultaneous optimization of these features remains challenging. Here, we present a TPC consisting of a silicon-oxide tunnel layer followed by two layers of hydrogenated nanocrystalline silicon carbide (nc-SiC:H(n)) deposited at different temperatures and a sputtered indium tin oxide (ITO) layer (c-Si(n)/SiO2/nc-SiC:H(n)/ITO). While the wide band gap of nc-SiC:H(n) ensures high optical transparency, the double layer design enables good passivation and high conductivity translating into an improved short-circuit current density (40.87 mA cm−2), fill factor (80.9%) and efficiency of 23.99 ± 0.29% (certified). Additionally, this contact avoids the need for additional hydrogenation or high-temperature postdeposition annealing steps. We investigate the passivation mechanism and working principle of the TPC and provide a loss analysis based on numerical simulations outlining pathways towards conversion efficiencies of 26%.
  • Access State: Open Access