• Media type: E-Article
  • Title: Maximal Theorems for the Directional Hilbert Transform on the Plane
  • Contributor: Lacey, Michael T.; Li, Xiaochun
  • imprint: American Mathematical Society, 2006
  • Published in: Transactions of the American Mathematical Society
  • Language: English
  • ISSN: 0002-9947
  • Origination:
  • Footnote:
  • Description: <p>For a Schwartz function f on the plane and a non-zero &lt;tex-math&gt;$v \in \mathbb{R}^2$&lt;/tex-math&gt; define the Hilbert transform of f in the direction v to be &lt;tex-math&gt;$H_{v}f(x) = p.v. \int_\mathbb{R} f(x - vy)_\frac{y} {dy}$&lt;/tex-math&gt;. Let ζ be a Schwartz function with frequency support in the annulus &lt;tex-math&gt;$1 \leq \mid \xi \mid \leq 2$&lt;/tex-math&gt;, and &lt;tex-math&gt;$\zeta f = \zeta * f$&lt;/tex-math&gt;. We prove that the maximal operator &lt;tex-math&gt;$sup_{\mid v \mid = 1}\mid H_{v} \zeta f\mid$&lt;/tex-math&gt; maps L&lt;sup&gt;2&lt;/sup&gt; into weak L&lt;sup&gt;2&lt;/sup&gt;, and L&lt;sup&gt;p&lt;/sup&gt; into L&lt;sup&gt;p&lt;/sup&gt; for p &gt; 2. The L&lt;sup&gt;2&lt;/sup&gt; estimate is sharp. The method of proof is based upon techniques related to the pointwise convergence of Fourier series. Indeed, our main theorem implies this result on Fourier series.</p>
  • Access State: Open Access